

WeAutomotive Techtalk Webinar

System-Critical Elastomer Components for Battery Systems

June 5th 2024, Andreas Proksch, Dr. Ondrej Kysilka

Andreas Proksch Product Manager Mobility andreas.proksch@datwyler.com T +49 1742710300

Dätwyler Sealing Solutions Deutschland GmbH & Co KG Maybachstraße 3 Cleebronn 74389 Germany

Datwyler market focus and core competencies

Technology & Innovation

Sustainability & Operational Excellence

Finance & Shared Services

Global engineering and manufacturing mobility experts

Mobility product portfolio

Engineering at the Heart of Mobility

Sealing technologies for battery system

Applications in battery system

Co-engineering process

Partners for full-service and in-house solutions

Materials expertise

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Developing elastomer compounds for system-critical components

All materials are customer-designed developments and are produced internally in Datwyler's mixing plants. Currently more than 800 active recipes globally

Different elastomeric materials and possible applications				
NR	Damping Elements			
SBR	Brake Systems			
EPDM	Brake-by-wire, Battery Systems, H ₂ -applications			
CR	Damping Elements			
NBR	Membranes			
HNBR	Membranes, E-liquids, Immersion Cooling			
VMQ	Battery Systems, Conducting Materials			
FKM	Liquid Mgmt, H ₂ -applications, High Temperatures			
FVMQ	Liquid Mgmt, Transmission			
AEM	Transmission, E-liquids			

Mixing and testing facilities

Laboratory scale

- Internal mixing know-how
- Various mixing equipment at lab scale
- Several industrial scale mixing sitess
- High level of automation and quality control

Testing and analytical labs

- Standard polymer testing methods
- Rheological and dynamic analysis
- Optical and electron microscopy
- o Chemical and elemental analysis
- Focus on multicomponent parts and surface modifications

How Datwyler's material team can support you

Battery cell seals

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Dr. Ondrej Kysilka Senior Manager Material Development ondrej.kysilka@datwyler.com T +420 495 405 405

Datwyler Sealing Technologies CZ s.r.o. Polní 224 Chudonice 50401 Nový Bydžov Czech Republic

Engineering at the Heart of Mobility

Battery Cell Seal

Assembly methods

Electrolyte compatibility test

Initial Conditions:

- Electrolyte preparation and storage in nitrogen filled glove box
- Initial electrolyte HF and water content (< 10 ppm, respectively)

Aging conditions:

Samples submerged in electrolyte for several hundred hours at a specific temperature

After ageing in electrolyte

Sample	Mechanical integrity	Surface appearance	Electrolyte coloration	HF formation (ppm)	Swelling (wt.%)	Mass change after drying (wt.%)
Reference	N/A	N/A	Colorless	28	N/A	N/A
FKM 1	ОК	Duller and paler	Slightly yellowish	48	21	4
EPDM 1	ОК	No significant change	No significant coloration	42	5.5	<-1

Datwyler rubber seal

Conventional seals:

 Thermoplastics like polypropylene, polyamide (PA, 12), and perfluoroalkoxy (PFA) are used

Rubber seals:

- Rubber (EPDM, and FKM) tested and approved for electrolyte compatibility: low HF formation and swelling after aging
- Customized design and simulation

Advantageous over thermoplastic seals for:

- Long lifespan of electric vehicles (EVs)
- High-vibration environments in EVs
- Effective sealing despite geometrical changes

After ageing in electrolyte

Properties	Unit	EPDM 1	EPDM 2	EPDM 3
ΔMicrohardness	IRHD	2	2	1
ΔTensile strength	N/mm ²	-0.4	-0.2	0.4
ΔModulus at 100%	N/mm ²	0.4	0.2	0.1
ΔElongation at break	%	-20	-29	0

Electrolyte ageing results

- A proven material portfolio based on EPDM and FKM formulations (lab and industrial scale)
- Compounds show:
 - Moderate to excellent electrolyte resistance
 - Electrically insulating properties
 - Stability in given tested environment
 - Very good mechanical properties
 - Very good deformation properties, i.e. compression set

452732 Electrolyte

Fire retardant compounds

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Measurement methods

- Difficult to quantify
- Difficult to run
- Examples:
 - Ease of ignition (LOI)
 - Fire strength (MARHE)
 - Fire spread and speed (UL94)
 - Specialized testing

UL94 standardization

- Vertical burn (VB) is more difficult to meet compared to horizontal burn (HB)
- Flame applied for 10 seconds
- "After-flame time" is recorded
- Based on "after-flame time" the fire resistance classification is assigned
- The classification: V0 > V1 > V2

Not classified

Top classification - V0

Mechanisms

Source: https://www.researchgate.net/figure/Schematic-illustrations-of-the-flame-retardant-mechanism-of-PLA-FGO-HQ_fig12_334618631

Standard vs. fire resistant compound

Standard compound

Fire resistant compound

 Fire resistant compounds exhibit selfextinguishing properties, contributing to the fire safety of EVs and is slowly becoming a new standard

Intumescent fire retardants

intumescent filler

The EPDM-intumescent filler testpieces after testing

Material	Mode of FR	Classification
70 ShA EPDM	intumescent filler	V0
80 ShA EPDM	intumescent filler, phosphoric additives	V0

Meet the Developer: Fire resistant compounds

26 WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Portfolio

Example of a V0 battery pack gasket

Material	Mode of FR	Datwyler lab	Certified external lab
50 ShA EPDM		V0	V0
60 ShA EPDM	Special fillers,	V0	V0
70 ShA EPDM	halogen-free	V0	V0
80 ShA EPDM		V0	V0

Properties	Units	Results
Density	g/cm ³	1.272
Hardness	ShA	72
Micro Hardness	IRHD	74
Tensile Strength	N/mm ²	12.2
Elongation at Break	%	352
Modulus at 100% Elongation	N/mm ²	3.6
Tear Strength A	N/mm	6.0
DVR	%	
DVR 24h/130°C, 25%	%	13
DVR 22h/140°C	%	48

Example of 70 ShA EPDM certified as UL94-V0.

We offer UL94-V0 solutions based on various polymers – EPDM, HNBR and AEM of various hardness

FR compound

Intumescent compound

Thermal interface materials Indirect cooling

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Engineering at the Heart of Mobility

Battery Systems

Thermal interface material (TIM)

Thermal management of battery electric vehicles

Air cooling

- Simple in design
- Low cost
- No issues with leakage
- Low heat capacity and thermal conductivity compared to liquids

Indirect liquid cooling

- Most frequently used in battery thermal management
- Cooling fluid flowing through channels transfers the heat
- Usually, a coolant made of a mixture of water and ethylene glycol

Immersion (direct liquid) cooling

- Emerging technology
- Reducing complexity of the system and component design resulting in reduced weight
- Positive impact on temperature stability, uniformity and efficiency

Roe Ch. et al. Immersion coling for lithium-ion batteries - A review. Elsevier. 2022.

Thermal interface materials (TIMs)

Various Thermal interface material solutions

- o <u>Thermal rubber pads</u>
- Thermal gap fillers
- o Thermal pastes
- Adhesives

Thermal Interface Material

These materials can be processed

- Cure-in-place
- Molded or calandered thermally conductive pad

Thermal interface materials (TIMs) are designed to provide adequate thermal conductivity to evacuate heat → thus enhance **performance**, **longevity and safety**

Source: https://www.youtube.com/watch?v=ssU2mjiNi_Q

Thermally conductive elastomers

Overview

Thermally conductive materials are capable of thermal transfer

Thermal management of EVs is using the principle in so-called **thermal interface materials** that support the heat transfer from battery cell/module to the cooling system

Thermal interface materials keep the optimal operating temperature of battery and prevent thermal runaway event

Thermal conductivity is measured in Watts per meter-Kelvin [W.mK⁻¹]

Thermally conductive elastomer

Overview

Percolation threshold

- Thermal transfer is governed by phonon-0 phonon coupling
- Filler-filler interaction 0
- Conductive path 0
- Percolation threshold 0
- Filler content 0

Conductivity

Filler concentration %

Thermal management and safety

Indirect cooling of batteries (thermal rubber pad)

Datwyler's project ETEMI® thermal rubber pads (lab scale development)

Characteristics	TIM EPDM 1	TIM EPDM 2	ТІМ VMQ 1	TIM VMQ 2
Hardness ShA	75	79	41	47
Density / g/cm ³	1.35	1.48	1.46	1.69
Thermal conductivity / W/mK	4.2	2.5	5.0	3.9
Flammability test (UL94)	V0	V0	V0	V0

Calendering

Performance test in battery systems

35 WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Immersion cooling

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Pros and cons of immersion cooling

- o Temperature stability and uniformity
- Dielectric fluids are non-conductive and normally "non-flammable"
- The design complexity of the system could be, contributing to reduced weight
- High cooling efficiency enables fast charging

- The weight of some of the fluids is a concern (e.g. hydrofluoroethers)
- More space between the cells for fluid flow: reduced pack volumetric energy density
- Lower specific heat capacity compared to waterglycol
- Different chemical compatibility puts greater demand on seals and hoses
- Leakage and corrosion risk

Different chemical families used for immersion cooling

- Aqueous solutions (incl. water-glycol, indirect)
- Hydrocarbon-based liquids (mineral oil)
- Ester-based liquids
- Fluorocarbon-based fluids
- Hydrofluoroether (HFE)-based fluids
- Silicone oils

AMG Battery Pack https://youtu.be/Rpf5uGCs-hI

Selection of sealing material depends on various factors such as the specific **application** requirements, compatibility with cooling liquid, safety considerations, environmental impact, and cost

Chemical compatibility tests (examples)

39 WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

 Long-term stability (1000hrs/100 °C) of selected polymers in ester-based cooling liquids

- Swelling behavior of selected polymers in fluoro-based cooling liquids
- Set of data available for all mentioned families

Thermal barrier materials

WeAutomotive Techtalk Webinar | June 5th, 2024 | © Datwyler, www.datwyler.com

Battery performance and safety

Thermal barrier material

Filler research done and first potential filler types in test phase

Battery performance and safety

Thermal barrier material

Preliminary tests show our material (grey line) keeping T below 200 °C after 5 minutes (=meeting existing safety requirement)

Please feel free to contact us in case of any questions!

Dr. Ondrej Kysilka Senior Manager Material Development ondrej.kysilka@datwyler.com T +420 495 405 405

Datwyler Sealing Technologies CZ s.r.o. Polní 224 Chudonice 50401 Nový Bydžov Czech Republic

Andreas Proksch Product Manager Mobility andreas.proksch@datwyler.com T +49 1742710300

Dätwyler Sealing Solutions Deutschland GmbH & Co KG Maybachstraße 3 Cleebronn 74389 Germany

Thank you!

Follow us on LinkedIn

Visit our website

